Mouse Cytoplasmic Dynein Intermediate Chains: Identification of New Isoforms, Alternative Splicing and Tissue Distribution of Transcripts
نویسندگان
چکیده
BACKGROUND Intracellular transport of cargoes including organelles, vesicles, signalling molecules, protein complexes, and RNAs, is essential for normal function of eukaryotic cells. The cytoplasmic dynein complex is an important motor that moves cargos along microtubule tracks within the cell. In mammals this multiprotein complex includes dynein intermediate chains 1 and 2 which are encoded by two genes, Dync1i1 and Dync1i2. These proteins are involved in dynein cargo binding and dynein complexes with different intermediate chains bind to specific cargoes, although the mechanisms to achieve this are not known. The DYNC1I1 and DYNC1I2 proteins are translated from different splice isoforms, and specific forms of each protein are essential for the function of different dynein complexes in neurons. METHODOLOGY/PRINCIPAL FINDINGS Here we have undertaken a systematic survey of the dynein intermediate chain splice isoforms in mouse, basing our study on mRNA expression patterns in a range of tissues, and on bioinformatics analysis of mouse, rat and human genomic and cDNA sequences. We found a complex pattern of alternative splicing of both dynein intermediate chain genes, with maximum complexity in the embryonic and adult nervous system. We have found novel transcripts, including some with orthologues in human and rat, and a new promoter and alternative non-coding exon 1 for Dync1i2. CONCLUSIONS/SIGNIFICANCE These data, including the cloned isoforms will be essential for understanding the role of intermediate chains in the cytoplasmic dynein complex, particularly their role in cargo binding within individual tissues including different brain regions.
منابع مشابه
Identification of a novel region of the cytoplasmic Dynein intermediate chain important for dimerization in the absence of the light chains.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy c...
متن کاملبررسی ترنسکریپتوم و تخمین بیان ایزوفرمهای سه ژن از مسیر پیامرسانی PI3K و FGFR در سرطان مثانه
Background: Aberrant pre-mRNA alternative splicing is a common event in cancer cells. Many abnormally spliced RNA variants have been observed in tumor cells and they can be used as biomarkers or therapeutic targets in new drug design. Increasing our knowledge in understanding the mechanisms of alternative pre-mRNA splicing for cancer-related genes and determination of cancer specific isoforms a...
متن کاملTissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities
An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1...
متن کاملDynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA
Intense investigation has identified an elaborate protein network controlling epithelial polarity. Although precise subcellular targeting of apical and basolateral determinants is required for epithelial architecture, little is known about how the individual determinant proteins become localized within the cell. Through a genetic screen for epithelial defects in the Drosophila follicle cells, w...
متن کاملAlternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, p...
متن کامل